jwbf.net
当前位置:首页 >> ∫(sinxsin2x)Dx的定积分 >>

∫(sinxsin2x)Dx的定积分

∫(sinxsin2x)dx =2∫sin²xcosxdx =2∫sin²xdsinx =2sin³x/3+C

如图所示:

sin2x=2sinxcos,原不定积分等于2cosx的不定积分等于2sinx+C

-cosx+1/2cos2x

∫sinxsin2xdx =-1/2∫(cos3x-cosx)dx =-1/2[1/3sin3x-sinx]+C =-1/6sin3x+1/2sinx+C

这题利用公式求

∫(lntanx/sin2x)dx =∫(lntanx)/2sinxcosx)dx =½∫(lntanx)cosx/(sinxcos²x)dx =½∫(lntanx)cosx/(sinx)dtanx =½∫(lntanx)/tanx)dtanx =½∫(lntanx)d(lntanx) =¼ [ln(tanx)]² + C

=∫(1-2sin²x-2sinxcosx)/(cosx+sinx)dx =∫1/√2sin(x+π/4)-2sinxdx =-1/√2∫1/(1-cos²(x+π/4))dcos(x+π/4)+2cosx =-(1/2√2)ln(1+cos(x+π/4))/(1-cos(x+π/4))+2cosx+C

网站首页 | 网站地图
All rights reserved Powered by www.jwbf.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com